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Surmnary 
The purpose of this paper is to characterize the molecu- 

lar parameters of a semicrystalline polymer by means of stress- 
strain-measurements. At low or moderate draw-ratios, the Gaussian 
theory of rubberlike elasticity of the amorphous regions allows 
to calculate the intrinsic birefringence of the amorphous region. 
At higher draw-ratios the non-Gaussian model makes it possible to 
define the number of statistical segments for any value of homo- 
geneous draw-ratio, and then to estimate the maximum extensibili- 
ty of the network chains. 

Introduction 

Because of its technological importance for the fiber 
and film manufacturing industry, uniaxial molecular orientation 
has been the subject of numerous investigations concerning in par- 
ticular the characterization and measurement of the degree of 
orientation, in relation with the macroscopic deformation condi- 
tion (SAMUELS 1974, WARD ]975). The importance of amorphous phase 
orientation, already recognized in early investigations has em- 
phasized the need for characterization methods liable to distin- 
guish between orientation distribution in both the crystalline 
and amorphous regions of a polymer. The major part of the present 
paper will deal with the uni-axial orientation of the amorphous 
region of the polymer, in order to determine the principal mole- 
cular parameters by application of the well defined kinetic theo- 
ry of rubberlike elasticity in the more accurate non-Gaussian 
form (particularly for high extensions). 

The Gaussian theory of rubber elasticity 

The quantitative interpretation of rubber elasticity 
rests firmly on the use of Gaussian statistics to describe the 
behaviour of a single chain. The elastic network is then treated 
as an assembly of chains, with the assumption, with can be justi- 
fied for Gaussian chains, of affine deformation of the junction 
points. Each network chain is assumed to consist of several sta- 
tistical links that can freely rotate about their main chain 
bonds. 

The stress-strain-birefringence relations obtained from 
the kinetic theory of rubber elasticity in simple extension are 
given below (TRELOAR 1975). 
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An 2~ o(~2+2)~ N(~I_=2)(%~_%~1) (2) 
45 

where o and N are the true stress (force per strained cross- 
section) and the number of elastic active chain per unit volume, 
~In denotes the average molecular weight between crosslink points, 
%p, is the degree of stretch (homogeneous draw-ratio), ~ repre- 
sents the mean refractive index of the polymer l(nl+2n2)/31 and 
(~1-~2) are the polarizability of the random link respectively 
along the direction of its length and the mean polarizability in 
the transverse direction. 

Equations (I) and (2) together show that streee-optical 
coefficient C = An/a is strain-independent, and enables the op- 
tical anisotropy of the random link (~i-~2) to be calculated. 

An 2.~ (n2+2)2 
C . . . .  (~i-~2) (3) o 45 kT - 

n 

Semicrystalline polymers 

Each phase of the semicrystalline polymer is assumed to 
have intrinsic properties and the physical unoriented property 
will be a result of the relative amount of the two phases present: 

Punoriented = ~Pc + (]-~)Pa 

where P is the observed property, B is the degree of crystallinity. 

Any observed anisotropic property of the oriented semi- 
crystalline polymer, AP oriented, is represented by a function of 
the properties of each oriented phases : 

AP oriented = ~Pcfc + (l-~)Pafa 

where fc and fa are the orientation function characterizing the 
average orientation of the crystalline and amorphous phases, res- 
pectively. 

The relatively small influence of the degree of crystal- 
linity on the short-tlme modulus is explained on the basis of the 
two-phase series model, which assumes linear additivity of the 
compliances of the amorphous and the crystalline phase (SAMUELS 
1974, TAKAYANAGI et all 1966). The influence of the amorphous 
phase will become predominant if the value of its modulus is much 
lower than that of the crystalline phase. Consequently, if the 
polymer sample is held at constant length to prevent shrinkage, a 
shrinkage force develops. This force reflects the mobility of the 
segments in the amorphous region. Thus, for a semicrystalline po- 
lymer, the shrinkage force per unit amorphous phase becomes : 

o _ pRr (%2_~pI) (4) 

By the usual additivity rule expressed here, the additi- 
ve effect of the anisotropy of each phase is represented by the 
following equation : 
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An = ~fcA~ + (l-B)faA~ + Anf = Aa + Ac 

where Anf is the (often assumed negligible) contribution of form 
birefringence, A~ and &~ are the intrinsic birefringences per 
unit volume of the crystalline region and the amorphous region 
respectively. 

The birefringence of the amorphous phase is the appro- 
priate parameter to be used in eq. 2, if this contribution, defi- 
ned per unit volume of the two-phase material, is reduced to the 
contribution per unit amorphous volume, i.e., Aa/(1-~). 

~e Gaussian representation of o/(]-~) and Aa/(I-B) ver- 
sus (%~-% ), and Aa/(1-~) versus o/(I-~), according eqs (I), (2), 
(3), enables the optical anisotropy of the random link (~I-~2), 
the number of repeat units per network chain, and then the number 
of random links to be determined if the optical anisotropy of the 
monomer unit can be calculated. This analysis is made with the 
assumption of low or moderate degree of elongation, i.e., that 
the end-to-end distance is very much less than the fully extended 
length of the chain. At high extensions the Gaussian approxima- 
tions are not valid. 

Non-Gaussian chain statistic of oriented semicrystalline polymer 

The non-Gaussian statistical treatment takes into account 
the finite extensibility of the chains, and thus of the network; 
the maximum extension being proportional to the square root of 
the number of n of random links in an amorphous chain between 
crosslinks. 

In the non-Gaussian strain, the formula derived by JAMES 
and GUTH (1943) appears to be more appropriate : 

oRT n -I ~p %-3/2L- 1 ( 1 
o = - ~  , L ( ~ t  ) - % 1 / 2 n l / 2 )  (5)  

-1  P 
where L is the inverse Langevin function of the fractional 
elongation %p/%p,max. 

1/2 For high extended chains, that is to say for %p~%p,max = 
n , the ultimate extensibility of the network corresponds to a 
strong upward curvature (a-~o). 

The value of ~'~ automatically determines the number n of 
equivalent random links : 

Mn = KnMo 

where K is the number of monomer units of molecular weight Mo,per 
random link, define in the region of small or moderate strain 
(eqs. (I) and (2)). 

o _ 0RT n-I/2%p I L-1%p %-3/2 L-' 1 1 
Thus : l - ~  KMo ' 3' ' (n---~/2) - ( I / 2  1"/2 ) (6) 

Xp n 

The shrinkage stress-extension relation is thus determi- 
ned by one parameter, n, which is specific to the non-Gaussian 
theory and controls the hehaviour in the high-strain region and 
the ultimate extensibility of the network. 
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For a more exact form of equation (2) relating birefrin- 
gence to higher strain, the TRELOAR (1954) modification of the 
KUHN and GRI~N result appears as show : 

Aa =A~F 
I-~ 

where A~ = Apo 2~ (n2+2)2- (7) 
9 

and APo = Nn(~1-a2) is equal to the maximum difference in polari- 
zability of the material per unit volume. 

F is the optical orientation function. TRELOAR's(1954) 
expression for the orientation function is defined by the corres- 
ponding series expression : 

1 ( 2 -I 2 (6%~+2%p- 8) + 6 6 3 16 
- 3(10%p+6%p-~)+... (8) 

F = ~n Ep-~p )+ 175n 2 ~ 875n %p 

The non negligible contribution of the higher-order 
terms in this expression, involves introduction of a closer appro- 
ximation. 

The TRELOAR (1954) modification appears more satisfacto- 
ry in the followed expression which differs from equation (8) by 
the use of a finite number of three terms which has been found to 
he numerically accurate to within I per cent over the whole range 
of the network strain : 

150n- 350n- 

However, if such an analysis is extended to the maximum 
extensibility of the network chains, it must necessary obey of 
the limit condition : F§ for %p§ = n I/2 

It appears from equation (9) that : 
282 178 -3/2 

Lim'F%p->nl/2 1050 1050 n < 0.268 

which leads to a maximum birefringence Anmax = A~F < 0.27 A~. 

This theoretical limiting value is much less than the 
values of a lot of experimental results of semicrystalline poly- 
mers. Consequently the Treloar's relation is clearly not appro- 
priate to use for such an optical analysis and it is necessary to 
introduce other numerical values for the equation ( 9 ): 

I 0n 2 50n a 

with : Lira Fxp.~nl/2ffi I + ~5 n-3/2 
4 ~ 3 

-~n =I. 

All the features considered above suggest that : 

i) for drawing of semicrystalline specimens at low or moderate 
draw ratios, the application of Gaussian theory of rubberlike elas- 
ticity of the amorphous regions, allowed to characterize the mo- 
lecular parameters, particularly, the number of active network 
chains per unit volume and the number of statistical segments in 
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an amorphous chain between crosslink. According to equation (7), 
the intrinsic birefringence A~ per unit volume of the amorphous 
region can be calculated. 

ii) at higher draw ratios, the non-Gaussian model makes it pos- 
sible to define the number of statistical segment for any given 
value of %p. The stress-strain (eq. 6) and birefringence-strain 
(eq. 10) theoretical datas, superimposed on experimental values 
must fit the same value of n, for a given draw ratio %p (Figures 
! and 2). The increase of n involves necessarily a certain amount 
of slip between physical entanglements until the limiting homoge- 
neous draw ratio. This results in an increase in the length of 
each network chain (CAVROT et al, ENGELAERE et al., in press). 
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A plot of equations (6) and 10), for various number of statisti- 
cal segments, n, superimposed on experimental values 
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iii) for a given value of the number of statistical segments, n, 
the maximum extensibility can be estimated by the relation : 
Xp,max = n I/2. It is thus interesting to characterize Xp,max by a 
two stage drawing in which the first stage induces a specific ho- 
mogeneous deformation (hp) and consequently the number of statis- 
tical segments (Figures 1 and 2). The second stage refers to a 
cold drawing at constant value of network chains (and also n) 
which leads to the maximum extensibility, Xp,max. Such an analy- 
sis has been extended to oriented semicrystalline poly(ethylene 
terephthalate), where the presence of chain entanglements and 
crystallines results in an effective molecular network structure. 
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